\

VA\
/) \

/

e

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

a
\

/,

y i
=\
(

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

2

OF

3

A

OF

Downloaded from rsta.royalsocietypublishing.org

TRANSé(FZTIONS SOCIETY

PHILOSOPHICAL THE ROYAL

The Diffraction of Electric Waves Round a Perfectly Reflecting
Obstacle

H. M. Macdonald

Phil. Trans. R. Soc. Lond. A 1911 210, 113-144
doi: 10.1098/rsta.1911.0004

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand
corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1911 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;210/459-470/113&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/210/459-470/113.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

N
I \

a4
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

[ 113 ]

IV. The Duffraction of Electric Waves Round a Perfectly Reflecting Obstacle.

By H. M. MacpoNALD, F.R.S., Professor of Mathematics in the
University of Aberdeen.

Received August 18,—Read November 4, 1909.

IN a previous communication® it was verified that the effect at a point on a perfectly
conducting sphere due to a Hertzian oscillator near to its surface was negligible in
comparison with the effect that would have been produced at that point but for the
presence of the sphere, when the point is at some distance from the oscillator and the
radius of the sphere is large compared with the wave length of the oscillations. In
what follows it is proposed to find the effect at all points produced by a Hertzian
oscillator placed outside a conducting sphere whose radius is large compared with the
wave length of the oscillations. TFor simplicity the axis of the oscillator will be
assumed to pass through the centre of the sphere, but this assumption will not
affect the generality of most of the results. An Appendix is added in which the
more important mathematical relations required are established.

1. Let O be the centre of the conducting sphere of radius «, and let the oscillator
be at a point O,, the direction of the axis of the oscillator being OO, and the distance
0O, being 7. In this case the lines of magnetic force are circles which have the line
00, for common axis. If y denotes the magnetic force at any point P, p the
distance of P from OO,, and z the distance of P from the plane through O
perpendicular to OO, yp satisfies the differential equation

= p)= 2 L )+ o) +typ = 0
3 PV 5 5, re)t galve)xyp = 0,

where 27/ is the wave length of the oscillations. Transforming to polar co-ordinates
(7, 0), where r is the distance OP and 6 the angle POO,, z = r cos # and p = r sin 0;
hence, writing cos 0 = p, the differential equation becomes

& e
5 P aa ) ryp =0 (1)

* ¢Roy. Soc. Proc.,” vol. 72 (1904), p. 59.
VOL. CCX.-—A 462. Q 28.2.10
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114 PROF. H. M. MACDONALD ON THE DIFFRACTION OF

The general solution of this equation is

vp = ’7“’/'“’ §4 {Aan+1/2 (K’}") -+ B)LJ‘—«)L-«X/:! (K?‘)} (1 —-f"z) %& ,

. 1 ’LL
where J,,., (k) is BesseL's function of order n+43, and P, is the zonal harmonic of
order 7.

If y, is the magnetic force at the point P due to the oscillator, y, is the real part of
Q e—w®=V1)

R
has to be expressed in the form given above for the solution of equation (1). Writing

C , where V is the velocity of radiation and R is the distance O,P; this

_ a e—nxlt
‘I’l =p 5;)‘ R

where
RZ = 7‘2 + 7‘12'— 2#7‘"1,
it follows that

= p 58;) oy T gl % (2n+1) ¥ ™K 1y, (th7) J iy, (677) Py
where #,>7, and

1/11 — Péa—P r_l/z,rl—!/zel/gn % (27l+ 1) Cl/‘zann.H/z (LK?‘) Jn—H/z (K7'1) Pm

when »>#,, where

— T 1yt [ T u(2)— (n+1/5) e o (2L,
e pp— S S !
Now
0 0 0
U ] 1 e 2 /A —
pap ( IU'){) 87, Map};
oP oP oP,_
r l [ n+1 (/ n—1
(2n+1)p T n o +(n+1)——~a# ,

a]?n+1 o a]-)n~1

5 1 ’ —
(2n+1) P, 2 »

therefore, 7, >,

Py = gk S [e‘/m-van_l,z (uer) {7‘ a% Ty (k)= (n—1) 7~‘1/2Jn__%(xr)}
1 .

— RO (k) { r —8—7'_1"2Jn+./2(m') +(n+2)r™ "0, (k1) } (1—p?) aP”],

or
that is -

11;1 = — Krl—l'/wf'l',z(f‘/*m §: ‘{61/,2(”- ) 7“1(,,,_.1/2 (LK’}"l) + 61/2 (nt1) mlin.(.a/z (bK?"l)} 0.!',,.{.1/2 (KT) ( ]. —‘/.Lz)
1

or

Y = —9”1—%;«‘/?%(2n+1)@1/2("“/2)"‘Kn+1/2(Lm"l)J,m/z(m‘)(l—pz)% RNE
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ELECTRIC WAVES ROUND A PERFECTLY REFLECTING OBSTACLE. 115

Similarly, when »>,
U= =y 3 (20 1) AT (1) Koy (wr) (1= p2?) % )
i P
The solution of equation (1) that is required is that solution ¥ which becomes
infinite in the same way as y, at the point (7, 0) and for which dyj/ér vanishes when
7 = a ; the real part of Cye"" will be the required magnetic force at any point, for
0 (yp)[or will vanish when » = «, that is, the electric force tangential to the sphere
will vanish. From the expression (2) for ¢, it follows that the required solution is of
the form

© . ~
= =R (2 1) R () (e () + B, ()} (1)

where 7,>7r>a, and the constants are determined so that dyfor = 0 when » = a, hence

b= —im e S ROV (204 1) Ky, (ukry)
1

9

P4y, (k) }
a { n+1/y . a
Tu, ()= 2 Ky () b (1= aPn,
a*‘—a {CLl/gKn.;_x/z(l/K(‘l)} (o
when
m>r>a . . o (4),
and
N o
_— ~3fopalfa 2 7) 1 o (n+1/) me
U r ?( n+1)e
5 -
DT ()} | -
Jry, (1) = 3 Koy, (0611) 0 Ko, (urer) (1—p) ) K
o {0 Ky, (ca) ; #
when
P> o o o (B)
Writing
KI* = 2, K = 2, KO = 2, 20y, (2) = 257y,
2R e, (2) = (=) 2", ey, (1) = 2% by, &e.,
u = R’ gin ¢, v = R cos ¢, ;= Ry sin ¢y, v, = R, cos ¢,
Uy = Ry sin ¢y, vy = Ry cos ¢y,

it follows that
2Ky, (1) = 27 gl T RO (e )
that is
DKy, (12) = Qo iR e 1w
2
Again
a 1 1 1/, 1 1 [ aR a
Y. — O o p— o) Te— 1P Y, D1 .
5 {27K, 1, ()} = 27 Vagrloe™ et e Jlﬁh ho— —R% —é},

0z 0z
Q 2
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116 PROF. H. M. MACDONALD ON THE DIFFRACTION OF
now ou_ 0w . o
IU e — — — ]_ h —_— =
5 U, , that is R 5 ,
therefore
0 1, -1, 1, 1) (4l - oR 1
3 {Z"K iy, (@)} = 27 g™ el ) mede {%”é’z‘—b} R,

and writing % R __ tan x, this becomes

o

0 - s
_é_z_ {zl/an+1/2 (LZ)} —_— 2 1/277-1/26 1/2(71+1/2)"‘“¢L—XLR"1/2 sec X

Similarly,
%{zl/z;[ i, (7)) = 2% ER T cos (p+x) sec x,

and therefore ‘
J Ve 9 ¢ v, 2 e ot o)
50—0{0‘ wir, (k) @{& Koy, (wear)} = ‘7;6 T D' cos (o+Xo)-

Hence the relations (4) and (5) become

b = — L% (@ 1) RUR et {sin — w09 cos (- xo)} (L—ps?) 22,
K'rl 1 ’ all:
when 7, >, that is
= LS YR e [CETA ot 2x0= b= (1 — 1,2 aPn' 6
¥ 2,(?112?(2““)31 R {e#te F(L—p?) o (6),
when », >, and
L bl 1 1/ _ Dy e aP
— 2 +]_ R LR Ye e(¢1 ¢)'—+e(2¢o+~)(o b—d)e 1— 2y YL n . . . 7 ,
b g § @ ) RO b o ")

when > ;. ;
9. The value of y at any point will now be compared with the value of ¥y at the

same point, and, the radius @ of the sphere being supposed to be great compared with
the wave-length 2/« of the oscillations, it will be sufficient to compare the principal

parts of ¢ and . Now

that 1s

e~ R

= (1—#2)[ gﬂ—.ugq] T

hence the principal part s, of ¥ is given by

m - -TQ -
Jo= = (1) e

In calculating the principal part of it is convenient to consider first the contri-
bution of the terms for which n+% is greater than the least of the two quantities
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ELECTRIC WAVES ROUND A PERFECTLY REFLECTING OBSTACLE. 117

z and z. In this case the approximations to be used for ¢, and y, are those given by
relations (x.) of the Appendix ; from these

62L(¢0+Xo) — 1+ tan (¢0+X0>
1—¢tan (q.')o-}-Xo) ’

e tx) = — 1 4™+ &e.,

that is

where T, is a large negative quantity. Hence

e‘(¢‘¢1)+6b (2do+2x0—p—1) = 2L Sin ¢e"“”x+ L62T06—L(¢+¢1)+ &C.,

that is
et (=) + e (2o+2x0—p—b1) — L@2T + L62T°+ ..
and
1 . 27Z + 1 "
24+ 1 Rl/‘zR /2 {6L<‘P—¢1) et(z¢o+2)<o*¢—4’1) — . k — Ief—Tl eQTo—T—Tﬂ .
(2n+1) ot * J {sinh § sinh § }"» " ' + g
Now ,
> 1>,
therefore
0, <6<8,  and ~-Ty<-T<-T,;

hence the order of the corresponding term in i, compared with the principal part of
Y, 18 (k) ", and is multiplied by an exponential with negative exponent. Further,
the portion of the series containing these terms is simply oscillatory on account of P,
and therefore the sum of any number of these terms is not of higher order than
(kr)""4, by the appendix ; hence the part contributed by the terms of the series, for
which n+4—2, is of the same or higher order than 2%, is negligible compared with v,
Again, the terms for which n+4—z is of the same or higher order than 2%, but
n+%—z is of lower order than 2", are at most of the order (k) "4, and therefore, as
above, their sum is negligible in comparison with . Similar results hold when
r>r. Hence the part of ¢, if any, which is of the same order as vy, is contributed
by terms for which n+4 is less than z or exceeds z by a quantity of lower order than
Z% when r > 7, and by terms for which n+% is less than z, or exceeds # by a quantity
of lower order than z,* when »>#,. Different treatment is necessary according to
the form of approximate value of P, (u) that is appropriate.
8. When 6 is small, the approximate value of P, (1) is given by
P, (u) = Jo{(2n+1) sin 0},
whence to the same order

obP,
Ope

= (n+1) cos 16 cosec 0J,{(2n+1) sin 10},
2 ) p)

and the series for  is approximately

¢
KkP,?

Y=

when » <#,.

sin 0 cos 303 (n+3)TRUR, s {640 4 ¢ @hutxo-b=iLT {204 1) sin 30},
1
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118 PROF. H. M. MACDONALD ON THE DIFFRACTION OF
Writing
S, = —sin 0 cos 16 2 (n+L)R%ER e =40 J, {(2n+ 1) sin 16},
K7y’

the appropriate approximations for R, R,, ¢, and ¢, are
R =seca, ¢ =2cosa ~-21—n§r+(n+%) a, where =z sina =mn+i*
Ri=seco, ¢ =z cosa—Lnmr+(n+3)e, where 2z sino=mn+i;*
hence approximately

¢ . . N .
Sy = — 5sin 6 cos 16 ? (n+%)" sec’ a sec’ ayer et emacosaramal | J {9+ 1) sin 360},
) !

Remembering that the oscillations of J,{(2n+1) sin 6} depend on e*@®+Desinit the
principal part of S,, arises from the terms in the neighbourhood of the term for which

d .

T {z cos a—z cos o, +(n+%) (a—a;) +(2n+1) sin 60}
vanishes ; for this a—a, is small since € is small, and therefore, unless 7 is nearly
equal to 7, which means that the point is close to the oscillator, 7+ % is small compared

with z for the terms that contribute the principal part of ;. Hence approximately

zcosa +(n+f)a =2+ él; (n+4)%

2 008 o+ (n+4) oy = 2+ él: (n+3%),
~1
and the principal part of 8, is equal to the principal part of

o sin 0 cos 03 (n-+ 1) [t G 3 ((2041) sin 46} ;

Ky’

that is, the principal part of S, is given by

S = K—q~ sin @ cos L0e ¢~ 5 s (G3)e £Jy (28 sin 30) L
1
therefore
ey 28N 10 25?10
S, = — —sin 0 cos Jher e ZED BT T
KTy (z7'—2 1)
or
'S . LK s1n26' —LK(71—1+ &i‘»qm’l/e)
= =K
(r—r)?

* Appendix, Relations (ii).


http://rsta.royalsocietypublishing.org/

1~
)

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

) §

a
\

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ELECTRIC WAVES ROUND A PERFECTLY REFLECTING OBSTACLE, 119
Now the distance D from the oscillator to the point () is given by
D? = ¥4+ r?—2rr, cos 0,
whence retaining only the most important terms
_ 2 (2
S, = — KT ]S)lzn Hawp’

and therefore S, = .
The same result follows when »>7,. Again writing

S, = ~717 sin 0 cos $0 = (n+1)° R%:R, e Ghot20=6=0) J {24 1) sin 16},
K 41 1

the principal part of S, arises from the terms in the neighbourhood of the term for
which

O—%{Zd)o+2x‘,——d)—-¢li (2n+1) sin 16}

vanishes. When n+% is less than z,, this requires that 20,—a—a, is small, since 6 is;
when n+% is greater than z, it requires that m—a-—e, is small, that is a and «, are
each nearly a right angle, which means that the point is close to the oscillator, thus
the case of 20y—a—a, small need only be considered. In this case the principal part
of 8, is equal te*the principal part of

U M A P —— 1) .
_0.5 sin @ cos %_6 s (n+%)26¢[2z0 2y (0 Yo (2247 = 27 — 2, 1)]J1{(27L+ 1) sin %0},
KTy 1

that is

S, = ;7%5 sin 0 cos 10 o= [me”?‘(z%'l'z““z’")g” GJ, (28 sin 10) dg,

0

whence 1

S, = — —% sin @ cos £6 ¢ ®o=+==) ~12 Shfl%g € (.2?;2__;_53?;125{1),

KT (22" =27 =2 1Y

or

Sz - _ /:’2_’( sin? @ (200-1_,’.—1_7.1-1)—2 [Py 2ak 2 sin? 13 (20 —r 7 lry 1))

This represents waves reflected from the neighbourhood of the points Q on the
sphere, which are such that O,Q makes an angle «, with the radius OQ, and if D, is
the distance 0,Q, D, the distance PQ, where P is the point (r, ), the above becomes,
after some reduction,

S; = —uk sin? ae @D,

the result that would have been obtained by elementary methods. Hence the effect
at a point P for which # is small is the sum of the direct waves and the waves
reflected at the surface of the sphere.
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120 PROF. H. M. MACDONALD ON THE DIFFRACTION OF

4. When 6 is nearly equal to = the appropriate approximation for P,(n) is
given by
P, («) = cos nwJ, {(2n+1) sin % (7—0)},
or, writing w—60 = ¢,
P, (n) = cos nad, {(2n+1) sin $0'},

and
oP .
b.l = — (n+%) cos nar cos 0 cosec 0'J, {(2n+1) sin 16’} ;
[.L
hence
—_ Lo @ 10 1V RLER ! (p— St Qo+ 20— b= .
Y= ~—-;<—7?sm 0 cos—gﬂ%(n+§) RAR, " cos nar { e =40 - o ChotPo=t=01 J, (204 1) sin £0'},

when 7 <7, where to the order required the terms for which n+% exceeds z by a
quantity of the same or of higher order than 2" can be neglected. Writing

L
Slz“.—————‘

— sin 6’ cos %0’% (n+1) cos naR%R,He @0, {(2n+1) sin 16'},
1

the terms of this series, for which n+% is less than z, and z—n—% is of higher order
than 2% are at most of the order («r)” (kr)™*y, and therefore their sum will be

negligible in comparison with s, unless &% [¢p—¢ tnwt+(2n+1) sin 16'] vanishes or is

a multiple of 27 for some value of # in the series. Using the appropriate approxima-
tions for ¢ and ¢,, this requires that a—e;+ is small or nearly equal to a multiple
of 27 since @ is small, and this is impossible, for « and «, are each less than 47, The
terms of the series S;, for which |z—n—%| is of lower order than 2", are at most of
the order (k)" (rry) "y, and their sum will be negligible in comparison with y, unless

_O%l_ [¢—¢1inwi(2%+ 1) sin $0'] is very small or nearly equal to a multiple of 27 for a
n

value of n in this series ; substituting the appropriate approximations for ¢ and ¢,
this requires that m—a,—m is small, which is impossible, for «; is less than .
Hence S, is negligible in comparison with 5. The same result follows when »> .
Again, writing

82 = — K; = sin & cos _%_9121 (n+%)2 COS ,n,n_Rl/gRlx/zem(2¢o+2xa~¢~<b1>J1 {(2n+ 1) sin %‘9’}’
1

the terms of this series, for which n+4 is less than z, and z,—n—1 is of the same or
of higher order than z,", are at most of the order (k)" (k)" sy, and therefore their
sum will be negligible in comparison with i, unless

% [2¢ho+ 2x0—b— by Lk (204 1) sin 30/]

vanishes, or is nearly equal to a multiple of 2 for some value of n in this series.
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ELECTRIC WAVES ROUND A PERFECTLY REFLECTING OBSTACLE. 121

Substituting for ¢, xo, &c., their approximate values, this requires that 2e,—a—a,t7
is small, since @' is small, and this is impossible for tm> 0y> o, £ > 0y > o, ; hence
the sum of these terms is negligible in comparison with . The terms of the series
—n—%| is of lower order than z% are of the order (rka)” (k7)™ s, and

their sum is of highest order when %(2¢0+ 2xo—¢—d, £ ) is small, or nearly equal
to a multiple of 2, for a value of n in this series. In this case the approximation
for ¢y+xo 18 F7+ 4%0 37" (3p)* [Appendix (vi.)], and the above condition becomes that

m—a—a,+ o is small, or nearly a multiple of 2, which is satisfied if both & and a,
are small. The sum of these terms then is

L sin 6 cos 4675 (n-+3) AR gt lEtoshonoay ;o 1) sin 40},

retaining only the most important part, and the sum is therefore of the order
(k) (k) ™24y, which is of lower order than 4, and therefore negligible in
comparison with it. When n+% is greater than z, and n+4%—z, is of the same or
of higher order than z,s, but n+% is less than z and z—n—% is of the same or
of higher order than 2%, when z <z, the terms are of the order («xr)” (kr,)™y;, and

their sum will be of the same order as i, if 5—%(24)0-!- 2xo— ¢ — ¢yt nar) is small, or

nearly a multiple of 2w, for a value of n in this series. ‘This condition is satisfied if
there is a value of n in the series for which 7—a—a, +7 is small, or nearly a multiple
of 27, which requires that both « and &, should be small. For the other values of n,
which have to be taken account of, the order of the terms is («r)” (kr1)™* 4, and the
condition that their sum should be of the same order as , is, that for some of these
values of 7, 47w —a; 7 is small, which is impossible. Hence the part of the series S,
which is of the order of v, arises from the terms beginning with a term for which
is equal to 2+ Az, where A is a positive quantity of the order of unity, and the
principal part of S, is therefore equal to the principal part of

5 sin @' cos 19’ 3, (n+§) RER, g Choromt=hn I, {(9n+ 1) sin $0'}

K 7'1 2+ Azo

ssin @ cos 10 3 y (n+1) R%AR, e Chot2xo=d=bitmm J L(9p,+ 1) sin 160'}.

K’)"1 29+ Azy /3
Now
Pelboirg — LHetan (po+X0)
1—¢tan ((150+X0)
that is [Appendix (x.)]
| A0 = — ] 4",

where T, is a negative quantity and —T, increases rapidly with n. Also, when 1
VOL. CCX.—A. R
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122 PROF. H. M. MACDONALD ON THE DIFFRACTION OF

and », are so great compared with & that sin « and sin «; can be replaced by a and «,
the principal part of S, is equal to the principal part of

3 . P > 9 (e .
Lsin @ cos b S (net L) et oA NI (904 1) sin 30},

K71y 20+ A:01/3

which is equal to

0
L . —ulx 2 (3- - .

sin 0 cos %a’j et e g (20 sin 107) U
1 Zo

When ' is very small the value of the above integral is approximately

tkr?

2 20—k (1)
———_ sin @e 1
(r+m)? ’

which is equal to the value of s at the point. These results correspond exactly with
those obtained by the usual treatment of the effect of an opaque circular screen
interposed between a source of light and the point of observation, when the source
and the point of observation are both at distances from the screen great compared
with the radius of the screen. It has been assumed in the above approximation
2 2 )
that )%;+_—)?; is a small quantity whose square is negligible ; when this condition is
1
not satisfied the value of the integral involved depends on the quantity

(k@) (a+o,) (tan o + tan ;)77

where sin @ = a/r, sin a; = a/r;, and diminishes rapidly as this quantity increases.
5. When 6 is not small or nearly equal to o, P, (n) can be replaced by its
approximate value
2 {(n+%) sin 0} cos {(n+%) 0—1m},
whence

dp,
dp

= (2n+1)" (7w sin® 0) = sin {(n+3) 0—4w},

and therefore, when » <y,

Y= 3 " (sin @)% S (204 1YERAER, {0 =4 4 g bt 2=b=00} gin {(n4§) O~ ),
Ky - 1

approximately, that 1s
b = (2) (sin ) (r2) 1§ (o BRI F—eres 00 st 04
1

+ ¢ [2o+2ko= b1t (1+1/2) 01w __ 51 [2b9+2x0— b=y = (1+/2) 0+ /] } ,

which may be written
lll = Sl—"Sz-i‘Sg"‘Sf;,
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ELECTRIC WAVES ROUND A PERFECTLY REFLECTING OBSTACLE. 123

where
S, = (2a) " (sin p)\/‘z (kr?)™ s (1 + L) ERYR, g b= 41 0=er]
1

S, = (20) 7" (sin 0)% (kr,2) ™' S (n+ )RR, gt =0t 04 ir]
1
s = (2) 7 (sin 0)"s (r?) ™0 3 (1 + YRR, o Pt o=t oo r)
1
. — ®, e -
S, = (2m)7 (sin 0)" (kr?) ™! % (4 )RR, Vgt @t 2o =it 0+ ]

Since r <7y, the formule (ii.) of the Appendix can be used for the terms of S; and
S,, for which n+% is less than z and z—(n+4%) is of the same or higher order than 2'%,
and the corresponding parts of S, and S, are given by

21

z=Azly 4
© Su = (2w) 7 (sin 0)% (k?)t S (n+4)" sec’ a sec’ oot e T B art ) @yt )= Yin]
1

. z2—A2Y;
S2l — (277)—1/2 (Sln 0)1/2 (anIZ)—l % (n_i_%_)‘*/? Sec‘& o Secl/g alet [2 cos a—2; cos a,+(71+‘/2)(a—a|—9)+1/‘1r]’

where z sin & = z; sin a; = n+4 and A is of the order of unity.

Now

o(lin {z cos a—z, cos oy +(n+3) (a—a; +6)} = a—o,+06,
and a—a;+6 cannot be a small quantity for a> a;, since 7, >1; hence S}, is at most
of the order 2,7, and therefore negligible in comparison with vs,.

glg p
Again 0,

O—%{z cos a—z, cos o, +(n+4) (a—a,—0)} = a—o,—0, P

a

and oe—a,—@ will vanish for a value of % between 1 and z— Az, T ‘

provided the point P (7, 0) lies inside the sphere described on OO,

as diameter, but not close to its boundary. If « and & now

correspond to the value of n for which 6 = a—a,, « is the angle

OPT and o tl.le angle OO,P in the figure,* and the principal Fig, 1.

part of S, is given by

Sa =.(27) Y sin® 0 (k?) ™" (2, sin o) sec’ o sec: oy et oo e eos “"’1/4”)1’“ B Crrrayrry) di,
: -t

where u is large, that is

Sa = (20) ™ sin’ 0 (k) ! (2, 8in )2 sec’ a sect: oyt ¢ oor e cos +m (7)) el

{ 1 1 }-1/2
zeoso 2z coSoy)

* The corresponding value of = is given by n+4 = xp, where p is the perpendicular from O on O,P.

R 2
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124 PROF. H. M. MACDONALD ON THE DIFFRACTION OF

If O,P = D, then

7, CO8 oy —7 cos o = D, rsin @ = D sin o,

and therefore

that is for the points defined above S, = — .

Su = wesin? #r*D %D,

The same formule (ii.) of the Appendix are applicable to the terms of the series S,
and 8,, for which n+% is less than z, and 2z—(n+%) is of the same or higher order
than z% The corresponding parts of the series S; and S, are given by

Sa = (27) "28in"0 (kry®) "

Zp—A

20Y/,
2 o (n ‘+ _%_)3/2 8601/2 o SBCVZ aleb [22, COS 0g—2 COS a—2; COS & + (n+1/) (2u0—a—al+9)—1/4,17'],
1

29— Azgl/y

Sy = (2m) =sin®0 (kry?) ™ 3 (n+4)" sec’ a sec o ! #0008 sz cos amz cos (1) Qo a0+ ir],
; , ,

where z,8in oy = zsina = 2, sin oy = n+%.  Now

dn

ﬁl—{2z0 oS oy —2 COS aa—2z; €08 a+(n+3) (2ep—a—a,+0)} = 2ay—o—oy+ 6,

and a,>a for r>a, ay,>a, for r,>a, hence 2a,—a—a,+6 is always finite, and
therefore, as above, the sum of the terms Sy is of lower order than ¢,. Also

dn

—d—{2zo COS ay—2 COS a—2, CoS o+ (n+%) (20— a—a,—0)} = 20— —a,~0,

and 20y—oa—a;—0 will vanish for a value of n between 1 and z,— Az, provided the

Fig. 2.

point P (r, 6) satisfies conditions to be determined. For
let ny+% = kp, where p <a, and let O,Q be a straight line
through O, at a distance p from O, meeting the sphere in Q
(fig. 2), then the angle TQO, is a,, where ny+3 = z,sin ay,
and the angle 00,Q is a,, where n,+% = 2, sin ;. Hence,
drawing QP in the plane 0,0Q making the angle TQP
equal to &, and taking any point P on QP, the angle QPO
is equal to «, where n,+% = zsin «, and the angle POO,,
which is 6, is equal to 2¢,—a—a,. For any position of P
on the line QP the terms of the series S, in the neigh-
bourhood of the terms for which n = n, contribute a sum
which is of higher order than any of them, and the

principal part of S, is given by

Su = (27) 7" sin’ 0 (ny+%)" sec o sects e 0o sz cos a=2 eos a+im)

( 2 1 1 )
j 61/2 w©? (Zo COS g 2 COS o 27 COS 0y CZC, }

—wm
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ELECTRIC WAVES ROUND A PERFECTLY REFLECTING OBSTACLE. 125
whence :
Su = ¢ (kry®)™" sin™ 0 (ne+1)" sec a sec’ o, < 22 ot 1 >_1/2
%y COS 0,y 2 COS L 2 COS a,
e (22, €08 ay—2 CO8 a—2; COS a])’
that is

y . . ) 2 1 1 \~%
Sy = wesin® a, sin’ 0 (z, sin &) " sec” & sec™ o, — —
% CO8 0y 2 COS @ 2 COS o,

e (225 COS ay—2 COS a.—2 COS &)
)

which-after some reduction can be put in the form

S a2, (2008 1 1 >1/2< 2 1,1 >_1/2 - (0,2 +QP)
Sya = ke sin a1< - +QP+01Q o&cosao+QP+O]Q e ,

and this represents the effect at P of the waves reflected from the sphere at Q.*

From the diagram it appears that the points P for which the condition
0 = 20— —a; can be satisfied are the points outside the tangent cone drawn
from O, to the sphere (that is the points outside the geometrical shadow), and
as P approaches the surface of the cone the value of n,+% approaches ko ; hence
the above result holds for all points outside the tangent cone and not close to its
boundary.

Omitting for the present the discussion of the terms of the series S, and S, for

* This result can be verified by elementary methods as follows: If M is the amplitude of the magnetic
force at Q, M; the amplitude of the magnetic force at P in the waves reflected from Q, the intensity
at Q in a beam of rays from O, of small cross section is

M202 sin (ag — o1) cos aod (g —a1) dep,
and the intensity in the same beam at P is

M, %2 sin 0 cos adfdd,

and these intensities are equal, therefore

M202 sin (@~ 1) cos agd (g — a1) = My%?2 sin 6 cos a df ;

now
6 = 2000 —a—aj,
2 08 agday = 2z cos ada = 2 cos a; day,
71 COS o1 — @ COS Ay = 01Q = ¢ sin (0&0 - acl)/sin oy
whence

. . . . 2 1 1
M:%? sin 20 = Ma? sin? (ap - o) sin 6 sec a sec ay [ 21 sin a; - - .
25 COS ay R COS & 2 COS a

The amplitude of the ¢ of the waves from O; at Q is Ma sin (a¢g—a;), and of the reflected waves
at P is My sin 6, therefore the ¢ of the reflected waves at P is

. . / . _1 2 1 1 )
-k sin? a; sin”* 0 sec” a sec™® a; (2 sin ;) ( - - > ,

2 COS @y 2ZCOSA 2 COS &y

which is the result obtained from the series.
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126 PROF. H. M. MACDONALD ON THE DIFFRACTION OF

which n+4—z, is of lower order than z,.* the terms for which z—n—1 is of the
same or of higher order than 2" will now be considered. Denoting these terms
of the series S; and S, by Sy, and 8,;, and remembering that

et = 1 4™ ..., &e.,

where T, is a negative real quantity increasing rapidly with n, Sy and S,, are to the
required order of approximation given by

2 A2T3

S = — (27) " (k) sin'> 0 3 (n+4)" sec” a sect oyl o8 ez s @) (ake =0 =or],
2—As :
S42 I (277.)—1/2 (K’)"12)_1 81111/2 6 2 (,n_}_%_)-’/g 3601/2 o Secl/g alet[nr—z cos a—21 COS a)—(n+1/;) (a+a1+9)+'/41r].

The value ofi {nm—z cos a—z cos ay— (n+3) (a+o,—0)} is m—a—oy+0, which,

dn
since « and a, are less than L7 cannot be very small, and therefore the sum of the
terms Sy, is of lower order than . Again the value of

EZ(% {nmw—zcos o—z cos ay— (n+%) (a+o,+0)}
is 7—o—a;—0, and, if P is a point outside the geometrical shadow for which the
angle OPO, is less than a right angle, there is a value #, of # in the series S,, for
which 77— a—a,—@ vanishes, viz., that given by 7, +% = «xp where p is the perpendicular
from O on Q,P, and the principal part of S,, is given by

— ' g 1 1
Sy = —(2m)7"% (kr®) ™' (m+3)": sec o sec’ oo™ Feosetaeos “l*”*")j e (soama * 5roora) de,
' 3

where
n+s =zsina =z sina,

that is by

g - - ; ; b, cos 1 1\
Si = —(20) 7% (kr?) ™ (1 + 3 sec @ gee' et oo wta et m (7Y <z e
1 1

or

S = we sin? ae™*P,

where D 1s the distance O,P. Hence

S42 = —\T‘l'

The terms of the series S,, S,, S;, S, for which |n+4—z] is of lower order than z% and
z—n—% 1s of the same or higher order than z" are of the order 2™, and, that their

* It willj be proved below that these terms are important only in the neighbourhood of the geometrical
shadow. '
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ELECTRIC WAVES ROUND A PERFECTLY REFLECTING OBSTACLE. 127

sum should be of the order of ¢, 7—a;—6 must be small, that is, the point P must
be on or close to the boundary of the sphere described on OO, as diameter. In
these terms of the series S; and S,, ¢*%** can be replaced by —1, and then the
sum of the terms of the series S,—8,+S;—8S, required is the same as the sum of the
corresponding terms of the series

dap,
du

1

Now, for the values of @ specified above, Elc_lﬁ {+ ¢+ (n+%)0} can only be small

when o is a right angle or differs from a right angle by a small quantity, hence the
principal part of the sum of the terms of the series 8,—S;+8;—8, is the same as the
principal part of vy, that is, it is equal to y.

6. When » > 7, ¢ and ¢, are interchanged, the value of ¢ may be written

Y = 8—5,+5;—8,,

and the discussion of the series is identical with that of the previous case. If a plane
be drawn through O, perpendicular to OO,, then for points P on the side of this

plane remote from the sphere and not close to the plane the principal part of &, is s, ;
for points outside the geometrical shadow and not close to its boundary the terms
of the series S,, for which = is less than z, have a sum of the same order as 5, which
represents the effect of reflected waves; for points outside the geometrical shadow
between the plane through O, and the sphere centre O, radius OO,, the terms of the

series S,, for which n is greater than z, have a sum whose principal part is —is,
and for points in the neighbourhood of the plane through O, the terms of 4, for
which |[n+34—2] is of lower order than z,":, have a sum whose principal part is .

Thus for all points outside the geometrical shadow and not close to its boundary the
principal part of the value of ¢ obtained from the series is the same as that which

would be given by applying the methods of geometrical optics.

7. The effect of the terms of the series S; and 8,, beginning with those for which
z—n—% 1s of the same or of lower order than z», has now to be obtained. The
corresponding part of S, may be written

Sp = (2m)™"% (sin 0)% (kr?)™ S (n+L)k RER, g o 2xomb=bi= (1 0+ o),
20— A2t/s
now for values of n greater than z, it follows, from the corresponding expression
for 2¢,+ 2y, [ Appendix (vi.)], that the factor ¢*®*x does not oscillate but approaches
the value —1 as n increases, hence for these values of n it may be written

e Gotxo) — 1-2 029: (—L)k Cotk (¢0+Xo)
1
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128 PROF. H. M. MACDONALD ON THE DIFFRACTION OF
Writing

Uy = Wee™, vy = wee™ ™,
and remembering that

cot (Po+x0) = =/,
it follows that

1+ 2w’y .
cot (¢0+X0) =T owad. szw,z %o

>

where (1-+2waw',)/(1—2wyw’y) differs from unity by a small quantity for all values
of n greater than 2, and T, is a negative quantity increasing numerically with n;
whence

) 142w\
X botxd — ] 93 () < 0 0) T
_ (=d" (5 — 2wy,
and

S43 — (277-)“1/2 (Sin 0)1/2 (K/rlz)“l [ § (/n_l_%)"’/z RI/2R11/2e‘ [2¢0+2xg— b =chy— (n+1/5) 0+Y/;m]
Zo

—Azl/y

_2 (n+3)" RVR, g™ o+ 1) 0=

3 1 l 2 oL 1
__2 2 2 (’/H— L)% RAR, <1 i ZZwUO@ZZ’Q> (— 1) W0 Dttt 9_1/4,,]:].
o 0/

In the series

s 3 (n+ L)% R¥R <1 + 2000 0> (= LYeTom bk 0
2y 1 ]. 2?/()0@0 0 ’

writing n+i =2,+{, since 2T, = log tan ¢,, the coeflicient of { in 2T, is of the
order z,”; hence, if the value of
0+ 84) aqsl

an

where n+3% = 2, is of higher order than 2,7, the sum of this double series is of lower
order than its first term multiplied by #”, and therefore to the order required
negligible. Again, in the series

2 (1 4+ )" RYR, et Phot o=b=hr= )04 ]
Azo

the factor e*®*x ogcillates and, writing n+% = 2,—,
2¢y+2x0 = 3m+37" (4e) 7! (3u)?
[see Appendix (vi.)], where
3/.4, = 61/3z0'1/3£, ¢ = 27Tl (—%),

and therefore the sum of this series is of lower order than its last term multiplied.
by z,” when the value of
0+ % + oy

on  on
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ELECTRIC WAVES ROUND A PERFECTLY REFLECTING -OBSTACLE. 129

for n+4 = 20 is of higher order than z,*. Hence the principal part of S, is equal to
the principal part of

— (2m) 7 (sin 0)" (kry?) 7 2 (n4-5) " RER e ot 0 8-l
when the value of
d¢ , 9¢
04 9P L 9P
+ on + on

for n+4 = 2, is of higher order than z, /¥

Now
—(27) 7" (sin B)% (k?) S (m 4+ L) RYR Ve ot 00 =)
20
= (2m) ™" (sin B)'% (kry2)"! [2” (n+ L) ERIR, g b+ 041 6=1r]
1

— 2 (rn + %)3/2R1/2R11/26‘ bttt/ 60— 1/4."']} ;
1

the principal part of the second series has been found above, and arises from the
terms on both sides of the term for which

op , 0
0+ - + 50 =
on  on
If n, is the corresponding value of 7, and
. m+E =2sin o=z sin a,
7 18 given by
0=nmr—a—a,

hence, writing n = n,+{, the principal part of the above series is

(27) ™" (sin )" (mﬂ.ﬁ)"l (m+%)"=sec asechoye ¢ oosetacosatim

—0 -0

2=~y 1 1 © 1 1
[‘ v e—l/ﬂ‘gz(z cone EJTOS—;,) dc—j o= ué? (z_&;_s—a. + 2 cos o,) dg:l,

Therefore, if D denotes the distance from O, to the point P (v, 6),
sin 0/D = sin afr; = sin afr,

and making the substitution

C = 771/'Z< 1 -+ L >~’2’7),

Z COS ot % COS o,

* If ¢ is an angle of higher order than 2,5, y the semivertical angle of the tangent cone to the sphere
from Oy, and the tangent cones with vertices on OO; whose semivertical angles are y + e are constructed,
the space excluded is that between these two tangent cones, which are both close to the boundary of the
geometrical shadow.

VOL. CCX.—A. 8
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130 PROF. H. M. MACDONALD ON THE DIFFRACTION OF
the above bexpression becomes

0
<27 e sin? o 0P ‘1/*’”[ e~ dy,
Mo

where

no = (a—7 sin «) (2D)% (Arr; cos o cos o)™

b

hence

®

S43 = _2—1,/2;l;]el/41rl.j (3“1/'27"“1'2 d’r),
o

n
In the corresponding part of S; 6 has the opposite sign and therefore the sum is
negligible in comparison with S,

If p is the perpendicular from O on O,P, p = 7 sin &, and when p is greater than «
the point P is outside the boundary of the geometrical shadow, 7, is negative and

increases rapidly as p increases, and the above value S tends to the value found in
the case where the point P was supposed not close to the boundary. When p is less
than « the point P is inside the boundary of the geometrical shadow, and the above

value of —S,; is the principal part of v, that is
§ =27 [ oy,
Mo

where 7, has the value given above.® This result expresses the ratio of the magnetic
force at a point inside the boundary of the geometrical shadow to the magnetic force
due to the oscillator alone in terms of one quantity 5, For values of 7, greater
than 5 integration by parts will give a sufficient approximation, for values of 7, less
than 5 it is convenient to write the above in the form

¥ =3 [1— (L+ M) = (L-M)],
where
L= Jmcos Fmn’dy, M= [ “sin Lmn’dy,

and use GILBERTS tables for these integrals. An important particular case is that
for which O, and P are both close to the surface of the sphere, as in the case of
wireless telegraphy. The tables given below show how the amplitude of the
oscillations diminishes as the distance along the earth’s surface from the transmitter
is increased. In calculating these tables the transmitter and receiver have been
taken to be vertical antennse, the fundamental wave-length is five times the height,
and the results are given in two cases: for oscillations of wave-length one-fifth of a
mile corresponding to antennze of height 211 feet, and for oscillations of wave-length
one-quarter of a mile corresponding to antennee of height 264 feet. The first column
gives the angular distance of the receiver from the transmitter, the second column

* The investigation assumes that the series in { obtained by the substitution » = n; + { converge for
values of n up to 2, and this will be so if P is near the boundary of the shadow,
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ELECTRIC WAVES ROUND A PERFECTLY REFLECTING OBSTACLE. 131

the distance d of the receiver from the transmitter in miles, the third column gives
the corresponding value of 7, calculated from the formula

Mo = 2 (a—7r cos £6) (\r sin 16)7"%,

the last column gives the ratio of the amplitude F of the oscillations at the receiver
to the amplitude F, of the oscillations due to the transmitter alone.

6. d. o- F/Fy. 6. d. o F/F..

1 0 70 <084 46 1 0 70 +068 47
120 93 151 43 120 93 <129 44
1 40 116 225 40 1 40 116 -196 41
2 0 140 +302 -37 2 0 140 268 +38
220 | 163 +391 +34 2 20 163 345 36
2 40 186 *483 *32 2 40 186 <428 *33
3 0 209 582 129 3 0 209 +516 +30
320 233 685 26 3 20 233 +609 928
3 40 256 <794 ‘24 3 40 256 <706 95
4 0 279 <907 . 22 4 0 279 807 +23
4 20 302 1-025 20 4 20 302 *914 +21
4 40 326 1-148 *18 4 40 326 1:024 *19
5 0 349 1:275 +16 5 0 349 1-137 -18
5 20 372 1-405 *15 5 20 372 1-255 *16
5 40 396 1:542 ‘14 5 40 396 1-377 ‘15
6 0 419 1-681 ‘13 6 0 419 1-501 ‘14
6 20 442 1-828 ‘12 6 20 442 1630 ‘13
6 40 465 1-973 ‘11 6 40 465 1:762 ‘12
7 0 489 2-124 10 70 489 1-897 11
7 20 512 2:278 09 7 20 512 2-035 11
7 40 535 2:436 *09 7 40 535 2-177 10
8 0 558 2-598 08 8 0 558 2-321 -09
8 20 582 2:763 <07 8 20 582 2469 <09
8 40 605 2-931 07 8 40 605 2:619 -08
9 0 628 3-103 <07 9 0 628 2:773 <08
9 20 651 3-276 06 9 20 651 2929 <07
A = 2 mile. . -~ A=_+25 mile.

APPENDIX.—INVESTIGATION OF MATHEMATICAL RESULTS REQUIRED.
-’

1. Summation of Series.

If u, denotes the general term of a series, and S, the sum of m terms, the first of
which is w,,
S, = U+ UpsrF oo FUppmer,

which can be written symbolically

S, = (1+eP+e®+...+em ) g
s 2
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132 PROF. H. M. MACDONALD ON THE DIFFRACTION OF

where D is d/dt and ¢ is put equal to zero after the operations are performed. This
is equivalent to

emD_ 1
S, = mumt, :
or
1 D mn
Sm = ﬁ 6]_)_1 (6 D_l) Ut

which can be expressed by

D . Upry ALF

The present object is to replace this integral by expressions suitable for calculation
in different cases. The first case is that in which u,,, contains an exponential factor
e, where a—2km. (£ an integer) does not vanish or is not very small. Writing

— o
Up+t = et Wy tts

where w,,, contains no other exponential factor of the form e

o . D+a
21 Upt = D1 e t’wnﬂ =¢€ t—e—iﬁa Wity
that is
N i at _l d/. < Dk
eD_.]_un'H € lzolx da n+t7
or
D ol ]- ‘ dﬂ 1 Clk_l ]_ 7
GD—IU"H =¢ %Okt[ W(G“—-l) +kdak—1 ea,_1> D, 44,
hence
eDI_?_ 1_un+t = 72_: < >[ae‘*tD’w +e“tD7‘+4wn+t],
that is
D 1 d atDk
6D 1 Up -+t é Z‘ < j n+t)
Therefore
ol db /1 N\d .
S, = j 7 —(———* —(e*Dtap,.,) dt,
0 /Eok! of dit ( t '”) ‘
whence

_ sl A1 g Y PR P
Sm - {%k!dak<1—‘€a>Dujn+t}t=0~ {%]CIW<].—6“ ¢ Du)n—l-t t=m

The sum 8,, is thus expressed as the difference of two series which, in general, are
diverging series, but they can be used for approximate calculation if the last term
taken is within that part of the series which converges. When the series S,

* (f/Boork, ¢ Finite Differences,” ch. v.
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converges to a limit when m increases without limit, the limit S to which it converges
will be given approximately® by

el dEf 1 i .
S = {%E W<m>D l:()n_i.t}t:o . . . S . . (1.),.

1t being understood that only the terms of this series where it converges are to be
taken.

The above clearly fails it a = 2km, for in that case 1—e* vanishes; it is also
inapplicable if e—2kar is very small, for then 1—e* is very small, and the terms of (i.)
diverge at once. The result shows that the sum S,,, however great m is, is not of an
order higher than that of the terms that compose it when a—2km. does not vanish or
is not very small ; this may be compared with the known case of DirIcHLET'S integral
which vanishes unless the range of integration incloses the origin.

The second case to be considered is that in which & =0 (to which the case
a = 2km is always reducible) and w,., contains an exponential factor e ; writing

) — B2
' Uniy = Wiy,
and remembering that

DDl — 1_%D+2(_)K—l

e —

1

-2_1/6_? B2k—l D2k7

where B,,_; are BERNOULLI'S numbers, it follows that

Sm = fo @Btg’lun+tdt+ {<—%+% (_)k—1 ’2—_/%;7 B?Jc-'l D2k_1> eﬁﬂwn+t}

t=m

(37 g B D% o

t=0°
When the real part of 8 is not greater than zero the important part of the integral

ﬁne’wwnﬂ dt is that contributed by small values of ¢, and writing
: Whay = W, + w0, + 50", + &e.,
it follows that. v
(et = w, [T dtru, "ot der ot
NOW 0 0 0
j;ne’:”2 dt = f: e dt — r e dt,
I

that is
J o dt = L' (—B) "+ e 2Bm— &e.,
0

* When wy,, only involves £ as a polynomial the series has only a finite number of terms which
represent the exact sum. _

T For the determination of the important part of the integral it is sufficient that e, should be
expressible in-powers of £ for small values of ¢.
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134 PROF. H. M. MACDONALD ON THE DIFFRACTION OF
and therefore, m mnot being small, the important part of j P dt is da'h (—B) 7
. 0
similarly, the important part of [ etdt is —%B7; hence, the important part of
: 0

m
L 1w, dt is Yw,a(—B)™", provided w/, is of lower order than w,B" with corre-

sponding conditions for w”,, &c. Therefore, when 87" is of an order higher than
unity, the most important part of S, is tw,s"(—B)7", in this case the sum of an
order higher than that of the terms that compose it.

The third case is when « is small and wu,., contains an exponential factor of the

at+ B2 ,

form e**®; as in the immediately preceding case, the result depends on the value of

the integral L ety L dE.

If the real part of B is negative, or if @ and B are both pure imaginaries, the

o]

important part of this integral is w,,]‘ e+ ¢, with the same restrictions as in the
0

previous case.
The fourth case is that when B=0, « is small, and u,,, contains an exponential

factor e*"; as above, the result depends on the value of the integral f e, dt,
0

and, if the real part of y is negative, or if both a and vy are pure imaginaries, the

o0

important part of this integral is w,,j e (i with restrictions similar to those of
0

the two preceding cases. The integrals in the third and fourth cases have been fully
investigated and tabulated.

2. Approximate Expressions for the Bessel Functions.

Most of the expressions to be investigated in what follows have been given by
L. Lorenz,* who obtained them from expressions for the sum of the squares of the
two solutions and the product of the two solutions.

The investigation that follows derives them directly from the fundamental
expression for a solution of BESSEL'S equation and the passage from the periodic form
of the expressions to the form involving real exponentials, which is insufficiently
treated by LorENz, is traced. Writing

zl/2J7l+l/e (Z) = 21/277'-—1/2?/”7“ (_)nzl/zJ'"”"’/z (Z) = 21/277_1/2vn>

and using SCHLAFLI'sT formula for J,, it follows that
Vy— i, = 27 g U”[(——)" cos {(n+%) O+zsin 0} —vcos {(n+%) 0—zsin 0} | d6

+ (=) sin (np)a| e mer @Oy dy—sin (k) m| e "‘*1/‘2)“0l\p:].:[

0 o

* ¢« (BEuvres Scientifiques,” tome I., p. 405.
+ Math. Ann. Band III, p. 143.
i In what follows » will be taken to be a positive integer, and » and » will be written for u, and v,.
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Hence

V—l = 2—1/2W—1/2z1/2[_bj”e~¢z sin 0+ (n+1/5) 6¢ d0+j ‘ P sinh ¢+ (n+1/) ¢ dl[}
0

0

0
—usin (n+4)w { g sib = (k) ¥ dl{l}
JO

It is required to find approximations for the integrals above when z is large. Taking
first the case where n+% is less than z, the important part of v—uw arises from the
first integral on the right-hand side, and the most important part of that integral is
contributed by the values of 6 for which the exponent is nearly stationary ; writing

w= —zsin 0+ (n+13)0,

w is stationary when z cos 6 = n+3, and putting n+4 = 2z sin «, the corresponding
value of 6 is tm—a. Hence substituting 0 = tm—a+9,

w= —zcos a+ (n+%)(r—a) +1z cos ay’+ —3];,z sin 29+, &c.,

and

at1/ym o
—12c08 a+t (n+1/) (om—a) t+1/52 cos a9%+1/gz sin afd Ol .
e 3 ;

j"e—w sin 0+ (n+1/5) Lede —

o Voa-=1om

that is

o1 /om

\r e~ v sin 9+ (n+1/;) 0 da = e~ eos at(n41y) (Mymr—a)e [ e‘/ga cos a32+1/cze sin a 93+ ... d_g

0 Ja—1om

Now unless $m—a is small, the important part of the integral on the right-hand
side is

o a—1/om

61/23:, cos a.§? d 3 - j 61/2& cos ay? d 9,

-0

a+1/2" 1 2 * 1 2
j e/zncosas d9 =j e/gacosa.‘) d_g__j

a—1/m atlom

and unless {(3m—a)zcos e} is of the same or of higher order than (zcos )™, the
second and third integrals on the right are negligible in comparison with the first,
that is, if z—n—% is of an order higher than 2%, '

o+ 1/om
j s e 9 = 2" (—iz cos o) T2 = 2"’ (2 cos a) e €,

a—1/m

and therefore, with the same restriction as to the magnitude of =,
m
j ¥ sin 0+ (n+1/4) 0 de — 21/271_1/2 (Z cos 0(.)—1/'2 eL[-;cos u+(n+l)’/.z1r-—(n+1/2)a]’
0
the term of highest order only being retained. Hence

V—Y = (COS a)"]'/z et [ €os atlgnm—(n-+1/y) a]’%@

* The parts contributed by the second and third integrals in the first expression for v —w are of
order z7* and therefore negligible,
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136 ‘ PROF. H. M. MACDONALD ON THE DIFFRACTION OF
when z—n—% is of an order higher than 2", and this is equivalent to

u = R"sin ¢, v = R’ cos ¢,
where _
R=secaand ¢ =zcosa—fnm+(n+e . . . . . (i)

When z—n—1% is of the same or of lower order than 2", the part of the first integral
in the expression for v—uw that is most important is that contributed by small
values of 0; the second integral now becomes of the same order, and the most
important part of it is contributed by values of i near to zero; hence

v— = 2“/277”’%‘/2[—:. (

6y 2
Y0 0

et [G=n=1R) 0=V 7 | J' * o G ) Y=gy dﬂ
b

the remaining parts being of lower order, and therefore writing

0 — 6‘/’3Z_1/’361,"5"L§’ ‘ll — 61/3Z"‘/s£’ Gl/:az'"l/a (n.}_%__z) —_ 8/‘1"
it follows that '

Yo LU = 2_1/261/37]'_1/22[/9[
' JO

[ o W= ({4 o lom j ¢ ome” e dl]’
0
where ¢, and {, are large quantities, the first being proportional to 246, and the second
to 2%, and as only the most important part of v—uw is required, and the parts
contributed by large values of { are negligible in comparison, {, and {, may be
replaced by . Hence all but the parts of highest order being neglected
YU = 2-1/261/377'_1/%21/6 [j 83M§"§3 dg..*_ e”llgﬂbj 6"‘3#3_1/3"";“;3 ng s
0

. (iit).

The values of R and ¢ in this case have now to be obtained, and it is convenient to
take first the case where |n+4+42|is small compared with 2. The expression in
(iii) can for this purpose be expanded in- ascending powers of u which gives

D— i = Qe S, (31 [1+e s (—em)] jzwgk di,
k=0 11 (k) 0

that is

-1 1 -1/, 1 1, v ¢ {1 k— )JL
— — L2 sge =20 s f3(2k—1)m) 1 i 3 2
V—1 = 2726y /5;20 (1+e )% (3p) wo

For the purposes required it is sufficient to know the values of R and ¢ to the
second power of u, hence neglecting p® and higher powers of u,

v = 23 11 (— %) + Il (—3)] cos® &,
w = 2R3V e [T1 (—§) — Il (—%)] sin & cos §r;

2
* It can be verified that this integral is a solution of the differential equation g-% - 9py = 0, which is
‘U,

approximately BESSEL’S equation for 1'"1/3Kn+1/2 when | n+ 4 —# | is of the same or lower order than 2.
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therefore

R = 28~ 24 [{I1 (=) 1+ Gull (—3) T (—3) cos S+ 92211 (—=3)}*] cos® 4

Now,
11 (~3) = 2701 (=) 11 (),
whence ;
(1 (=3))* = 2971 (=),
similarly,
{H (_%)}2 — 22/33‘—‘/97,.1/21‘[ (_%) ;
hence
. R = 87 % s [I1 (= §)+ 2411 (—%) . Bu+ 211 (—§) (Bu)*]. . . (iv.).
Again, 1)
Sull (—
tan T (—§)—3p 37 tan §
e Ry
therefore ¢ = gw—pB, where 8 is given by
3w sin 3ol (—%)
£ — 3 3
B = (=) del (=)
whence
B = 3pc (1—3pc) sin g,
where
= 10 (=31 (=) = 27 (),
and
¢ =¢m—3uc(l1—3pc)sing= . . . . . . . (v.)*
The value of y, where
tany = —% d—R
dz

is also required; it is, however, more convenient to calculate ¢+x. From the
relations

—lcj—R—u@—kv@ 1)du—udv 1
2dz T de dz’ dz de

1t follows that

’ ’
uw +vv
tan y = — v U0
wv—uw
Now
U
tan ¢ = —,
' v
therefore

v _ tan+tany

w  tan ¢ tan y—1

s
, thatis tan (¢+x) = _%,;

to obtain ¢+y to the second power of u, the third power of u must be retained in
u and v, hence

an = {I1 (—%)+310(3) (8u)’} cos® ¢
tan (¢+x) I (—%) sin g 657' cos 6w+éﬂg ';‘(3,;,)2ssm 2 cos o

* These expressions for R and ¢ are to the order given, the same as those given by LORENZ.
VOL. CCX.——A. T
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that is

| (=R BRP,
tan () = L () (g 0 47

therefore ¢+ = §m-+vy where

T () (8p)’ tan . 1 .. ,
N - V0 o M A - 1 — /a 2
tan (1) sec? Lnr that 18y = 1o 3 (3;1,) f
whence

. -
prx=dm+ 8T o (),

When z—n—% is of the same order as ', the series for v—w in ascending powers of
p is not suitable for obtaining approximate values, and must therefore be replaced by
a series involving inverse powers of u. To effect this it is necessary to obtain the
principal part of the integrals in (iii.) ; as in this case p is negative, the principal part
is contributed by the second integral. Writing

w = —3pe ",

the important part of the integral arises from values of { in the neighbourhood of
the value of { that makes w stationary ; this value is given by & = (—p)"e ™, and

substituting
| L= (~pteim il
1t follows that :

-1/, ® -3 e_‘l/a‘lﬂg__gs 7 _'2 (—~ )3/2._1/.,, wg_Vﬁ"'" —3(— )I/ze—l/um{z,_gs
e lmy oM d£ = g2 g e 3(=p. 1?6 dg;
0 ! — (=) /23" feme

when p is not small the principal part of the integral on the right-hand side is the
same as that of the integral whose lower limit is — o %™, and therefore the principal
part only being retained,

L ~Yy Yy 2w 1 e
P I df = 37 (—p) Ve -,
0

Hence, the principal part only being retained,
o= = 67l (—pu) e o2 =g
therefore
R= 6 (-p) ™ p=2(-p)tim
and substituting for u its value, this becomes

R= {2 (—n—d)) % b= 2 mn—dVie it L. (vid)

These are the forms that the expressions for R and ¢, when z—n—% is of higher
order than 2", take when « is near to 4= ; for, writing $w—a=¢, it follows that

¢ = zcos a—Fnmw+(n+3)a


http://rsta.royalsocietypublishing.org/

a4
I\

A A

I ¥

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ELECTRIC WAVES ROUND A PERFECTLY REFLECTING OBSTACLE. 139
becomes
¢ =zsine—(n+})et+im;
now
z—n—% = z(1—cos €) = }z€’,
therefore
¢ =12é+im =52 (z—n—4) et L
and

R =2 {#—(n+4)) 7 = 2 s=n—3} 7 {2 (e—n— D)}
that is, retaining the principal part only,
R = 2"~ {2 (z_n_%)}“l/z.

The leading term in (v—w)z™% being known, a further approxima,t‘icn can be
obtained from the differential equation

2
El_ﬁzg —9uy =0,

the result is

1.5 1.5.7.11 1 &c.}.%

—y = 6oy (— ) ap—2e (=1 m ] | . — :
v—w = 67T (—p) e {+144 (—p)>  2.144° " (—p)¥’

The same remark applies to the approximation for v—wu when z—n—4% is of higher
order than 2%, the ordinary differential equation for BEsSEL's functions being made
use of.

When n+%—2is of the same order as 2"+ the corresponding series when w is positive

is required. The principal part of v—w now arises from the integral j - di, the
0

principal part of which is contributed by values in the neighbourhood of the value of
{ that makes 8ul{—{® stationary; that is, in the neighbourhood of = p”, and
writing

{=p"+¢,
it follows that

j - = ez;f/ZJ’ ’ e~ l%r=gt Jr
. 2

0 -

therefore the principal part is
62"3/2‘[‘ 6“3Ml/2§12 dll — 3—1/27Tl/2l.(,_1/462"‘3/2.

This result gives the leading term in the value of v, to obtain the leading term in
the value of u it is necessary to calculate the principal part of the imaginary terms,
that is, the principal part of

%6—1/3"” [ 6—3#3_1’/3"‘§—§3 dc_%ellsmj‘ 6—3#61/3"‘§-§3 dél
J 0
* (f, StokEs, ¢ Camb. Phil. Trans.,” vol. x., p. 105,
T 2
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The principal part of the first of these integrals arises from values of { in the
neighbourhood of { = p”e’™, and of the second from values of { in the neighbourhood
of {=phe", hence writing in the first = p’e"™+{, and in the second
{ = ple ™+, the expression becomes

n

00
1 o Yaa Yp Vgmes o, .
%@ 1/ij . e 2 2-3u 12 137 48 dgl_%elmm (
—u % 3me "

o g, ey Memie _ps
3 e (SRt dch

) ,
1(28“1/ 37

and the principal part of this expression is equal to the principal part of

@

— /28—1/37”

. o ¥aa Yo Mamis ® o ¥y Yo, —1/gm
Lot J o wh-ahdTg g 1 gen j' 1 oo g g
"

_.Ml/zel/s""'v
which, writing {, = ne "™ in the first, and {, = e’ in the second, is equal to

1 Y
e Jeme we— Heme 5

8‘_'2#3/2-8”1/27’2 dﬁr’_%el/zmj' 6—-2,; 12,.3,;,1/*2.,'2 d’)‘) ;

1 ,~"/gm
5€
2 j p.l/ 2%

1
—uth,

that is, equal to

1L 0 6_2,,'3/2_3”1/2,’2d 1L 0
2" ), N2l oy,

[

—_ 3/2_' 1/2 2 * — 3/’2_, ! /‘2
o2 T3y d‘l)—b e 3n’n2d7);
0

now the principal parts of the first and second integrals in this expression are equal,
but with opposite signs, and therefore the principal part is
- j " g u—aul g dy = _._;_L3~1/z7r‘/zy“‘/4e—?us/7.
0
Hence

- - 3/, 9,5
Ve = 6 I/GZI/G’.L A [62”' 2—%#.6 2p ] ;
and

s

3/, _
R —_ 6"1/3Z1/3,L—]/2 [6411/2,{_%6 4 ,
8- e
tan ¢ = e~ . . . . . . . . . (vilk).

The leading terms having been determined, the approximation can be carried further
by using the differential equation, and the result is

1.5 4, 1.5.7.11
1aat 1.2, 1442

o 1.5y 1.5.7.11 «
._.‘1_ 2u3y — " /a B it 3_&' .
2t {1 Vi BT S VVEL H

v—w = 6 oo [62“% {H— o &c.}

# Tt should be observed that the constant of the imaginary part is half the value that would have been
given by STOKES’ rule, p. 112 of the paper referred to above; the explanation of this is that the value of
the 6 in STOKES’ investigation that corresponds to this solution is one that belongs to a boundary for the
intervals of @; this case is not discussed by STOKES, but it is not difficult to prove that for such values the
constant takes half the value it has in the interval,
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The value of x is given by the relations
tan (p+x) = 2", or tany =e*> . . . . . (ix.),

the leading term only being retained.
When n+4—2 is great compared with 2%, the necessary approximations are obtained
from the original formula for v—wu, viz. :(—

w
G—L:siuo+(n+1/.,)ez d0+j. G—zsiuln}/+(n+l/2)\]; Cllp

[ 0

v—wp = Qe [-'—Lj
» N
—usin (n+%) wj e Y=ty oln[;J.
0
The principal part of this expression arises from the second integral, and is

contributed by the values of { near to the value that makes ¢ sinh y—(n+%) ¢
stationary ; if this value of i is 8, then

zcosh 8 = n+1,

and writing ¢ = 8+, it follows that

o

!

the principal part of which is equal to

L]
e~ sinh Y+ (n+1/) ¢ d¢ — j e (n+1/y) 54z sinh §—22sinh & sinh? gy — (n+1/5) (sinh i, — ) d¢1’
-5

o

e (n+1/5) §—2zsinh & j 8-1/22' sinh 82 dl'bl —_ 21/271,1/%--1/2 (Sinh 8)—1/2 e(n+1/2) 8—2zsinh 6,

— 00

8
being of lower order when n+%—z is of

-

the part which depends on the integral J

higher order than 2" ; hence

v = (sinh §)Mhet+ie=zsinns
where 8 is given by 2z cosh 6 = n+4.

To obtain u it is necessary to calculate the leading terms of the imaginary part of
the expression for v—uw, and this arises from the first integral ; the part required is
the principal part of

_%Lj” e v sin é+(7l+‘/2)L0 dg—‘%l, j” e sin 8—(n+1/y) 8 da.
0 0
The exponent in the first of these is stationary when 6 = 3, and the exponent in the
second when 8 = —.§, writing in the first # = 83—, and in the second 0 = 5+ 6,, the
expression becomes

T—18 7+ 18
— %—Le— (n+1/5) 8+ 2 sinh § { j e—2z sinh & sin? 1/50, + 2 cosh & (0, —sin 8;) dﬂl + j 8—22 sinh § sin? Yy, — 12 cosh § (8,—sin 6;) dﬂl l ,
—8 W
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the prinecipal part of which is equal to the principal part of

=18 w8
- 1)8+2sinh § — 2z sinh § sin? 1/,0 <o i in??
"‘%L@ (n+1/5) 8+ 2 sinh { ‘. g~ 27 sinh 3 sin? 1,0, dHI + [ e~ sinh & sin? 1/,6, dal } ,

v =18 W

that is to the principal part of

0 0
—(n+1, i —22 si in2 1/, —27 s sin? 1),
721—1,6 (n+1/y) 8+2sinh & {j e 22 sinh § sin? 1,0, dﬂl 4 [ e sinh 8 sin?1/,0, dﬁl
—18 w8

G . in2 1.8, = i in?1 "
+ 2 § 6—23 sinh & su»1 /o8y d01 + j 6—23 sinh § sin? 1/,6, dﬂl .+. j
0 ™

ks

Ls
— i in21
e 2z sinh § sin? 1/,8; dlgl } ,

and this 1s equal to the principal part of

™
- Le—(n+1/'2)8+z sinh BJ’ @-28 sinh 8 sin2 1/,0; dal’
0

which is

— Le—(;z+l/2)8+z sinh Sj ed/?zex2 sinh Sdgl —_ 2—1/277_,1/2'2«1/2 (Sinh 8)«1/%6«(71-}-1/2)84-: sinh 8’
0

and therefore _
u = _% (Sinh 8)——1/26-—(n+1/2)8+: sinh 6'

Hence, writing r = 2z sinh §—(n+%) 8 where z cosh 8 = n+%, we have
% =% (sinh 8) ¢, v = (sinh 8§) e,
R = (sinh 8)7! {e7" +1e™},
tand =ge . . . . L L L L L L (x)

It remains ‘to prove that as 8 becomes small these expressions become identical
with those obtained for the case when n+31—z is of the same order as z, When

8 is small
zsinh 6—(n+4) 6 = 2z sinh §—8z cosh §,

that is, .
1_ 3y
T=—~%~283=—%{—————————2(n:ﬁ Z)} .
Now | ‘
9% — ey (W HE=2)1"_ 1 [2(n+g—2)1"
s = 2 { (g EE=R LT g (2O Ea)
and

6 _l/sz‘/d#"% e 2—1/"21/‘ (n + %___ Z)_Ih,

which is 87 when 8 is small, and therefore as & diminishes, the form of the expression
in (x.) becomes that in (viii.). The approximations in (x.) can, as before, be carried
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further by using the differential equation satisfied by 27" (v—uwu), which is BESSEL'S
equation.®

The various approximations are collected together below for convenience of
reference :— '

When z—n—1% is great compared with 2",

R=seca, ¢=zcosa—fnm+(n+t)e . . . . . . (i),

~where zsina = n+3
When z—n—1% is of the same order as 2,

R =2%2@z—n—-34)}"" ¢=32""r—n—-3)+3xr . . . (vil).
When |z—n—4/| is of lower order than 2,

R = 37%r b [ (=) + 2511 (—1). Sp+ 2811 (=) (Bu)P ] . . . (iv.),

¢_—=%7r—-3p,c(1——%p,c)sing-. e (),

1 4o .
¢+X:%7r+zz3 EBu)y . . . . . . Lo (Vi)

where
Bu = 6" (n+d—2), ¢ =27y (=)

When n+4—2 is of the same order as 2",

e = %o g g g
R = 67"y e+ L™, tan = Le™™". . . . . (viil),
3/ .
tany =e*" . . . . . . . . . . (ix)
When n+4—z is great compared with 2"

R = (sinh 8)'[e™+4e™], tand=13%e. . . . . . (x),
where
r=2zsinh 8— (n+%)8, zcosh§ =n+.

When 7 is not an integer the corresponding results can be obtained by writing

* Another method of approximating to the value of R is to make use of the relation

- ij Ko (2n sinh ¢) cosh (2n+ 1) ¢d¢,
T Jo

which is not difficult to establish, and then deduce ¢ from the result ; the method given is more direct,
and avoids the difficulties that arise in determining the constants for the different forms of ¢ in this other
method.
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e~ for (—)" in the original expression, but, with a view to the special case where
n-+% is an integer, it is preferable to use the solutions K,.., (2) and K.y, (—w2); the
expressions to be approximated to are 2"7™"%"K, ., (1) and 277" %2*K, .., (—z). With
the same notation as when # is an integer

20 T K gy, (12) = Rirem b=t

21/’217- . I/fZZI/ZK" +1, ( — Lz) P Rll/Qe"b +a(n+1s) 77"

where R and ¢ have the same values as when n is an integer.
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